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INTRODUCTION
In this paper, we shall consider a three-dimensional (3-D) cavity formed by a finite circular
waveguide with a planar termination at the open end, and analyze the axial symmetric
diffraction problem by means of the Wiener-Hopf technique. The method of solution is similar
to that we have developed for the analysis of parallel-plate waveguide cavities [1], but is more

complicated because of the cylindrical geometry. The time factor is assumed to be e-i°wt and
suppressed throughout this paper.

WIENER-HOPF ANALYSIS OF THE PROBLEM
We consider a 3-D cavity formed by a finite circular waveguide with a planar termination, as
shown in Fig. 1, where the cavity surface is perfectly conducting and of zero thickness. The
cavity is assumed to be excited by a hypothetical generator with voltage of unit amplitude
across an infinitesimally small gap at z=d(<ILI). Thus the applied electric field becomes a

uniform ring source given by e•(p =b-0, z)---(z-d), where 5 (.) is the Dirac delta function. Let

the total field 4 '(p,z) be

(Pz)= (pz)+ ý(Pz) for 0< <b, (<)

4(p,z) for p>b,

where d '(p,z) is the field excited in an infinitely long circular waveguide due to the ring

source, and 4(pz) is the unknown scattered field satisfying the scalar Helmholtz equation. In
the following analysis, we shall assume that the medium is slightly lossy. Applying the method
established in our previous papers [1, 2], we derive the transformed wave equations as in

Th1(pa,)=0 in p>b for lI<k2 , (2a)

TT_(p,ac) =(f(p) in0<p <b fort <k2 , (2b)

![I•.(p,cL)+e""aT(p,L)]=-ae-iaLg(p) in O<p<b forT >-k 2 , (2c)

where T= d2 /dP2 +p-'d/d p _y 2 , and y =(Ct 2 -k 2 )1 /2 with Rey > 0. In (2b,c), f(p)
and g(p) are unknown inhomogeneous terms. The terms on the left-hand sides of (2a-c) are the
Fourier transforms of the functions appearing in (1), and are defined by

0D(p,a)=(27r)-1/ 2 JP(p,z)eiadz (3)
-00O

with a= Reax+ilma (ma +iT) and
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(D(p,(x) = T(p,(x) + (D I(p,ot)- Di(p,oa), (4)

TI(p,a) =ee-L T_ (p,c x)+ e+iaL+(p,c), (5)

XA

Ring source
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L L

Fig. 1. Geometry of the problem.

where T_(pa)=_ (pa)+Q_(p,c), T÷(p,(x)=(+(p,a)+Q,(pa,), (6)

D, 4 +(pz)e"( L)dz, 4D 1(pc) - fLI(p, z)e'ladz. (7)
1±L -fn_

Here (D'(p,cx) and Q± (p,ct) are known functions. In (4)-(7), the subscripts '_' imply that the

functions are regular in the half-planes T 'Tk 2 , whereas the subscript '1' implies an entire

function. In addition, the function D(p,cL) defined by (3) is regular for Ic 1< k2 .

Solving (2a-c) for the unknown functions on the left-hand sides with the aid of the radiation
condition and the boundary condition on the termination, we may derive a scattered field
representation in the Fourier transform domain. Taking into account the boundary conditions at
p =b, we derive the desired Wiener-Hopf equation. Applying the factorization and

decomposition procedure, we finally obtain the exact solution with the result that

E..(bi) + M-(cL) ) + M1R. ((x), (8)

E+(ba)- (2) (c)+ e-4YnLM+(iyn)E+(biyn) M+ (a)R+ ((x) (9)

with

(1,2) 1 + e +_vLM+(v)E+(b,v) dv (10)

2±k (

where R+(cL) and M±(oc) are known functions, and E±(b,a) are unknown functions denoting

the Fourier transform of the z-component of the electric field at p = b. In (10), I0(.) and K0 (.)
are the modified Bessel functions of the first and second kinds, respectively. Equations (8) and
(9) provide the exact solution of the Wiener-Hopf equation, but are formal since they contain

the branch-cut integrals J (1,2 ) (a) with unknown integrands as well as infinite series with the

unknown coefficients E±(b,±iy,) for n=1,2,3,.... Applying the approximation procedure
developed in [1, 2], we can derive an approximate solution convenient for numerical
computation, but the details are omitted here.
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NUMERICAL RESULTS AND DISCUSSION
We shall now present numerical examples of the far field pattern for various physical
parameters to discuss the scattering characteristics of the cavity. We have computed electric

field components Ie* =e,(p,z)RI and Iep =Iep(p,z)RI as R-->oo, where (R,O) is the

cylindrical coordinates defined by z =Rcos0, p =Rsin0 for 0<0 <7t.
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Fig. 2. Radiation pattern of electric field components e* and e. for dl/L= 0.
Line 1: 2b = IX,Llb =1. Line 2:2b =2,l/b = 5.

Figure 2 shows the far field amplitude of e* and e* as a function of observation angle. It is seen

pf
z P

from the figure that the radiated field oscillates rapidly with an increase of the cavity dimension.

This sharp oscillation for larger cavities is due to the effect of the multiple diffraction between
the aperture and the back corner. Next we evaluate the power of TM waves radiated from the
cavity through the elementary surface dS = sin OdOd~p . The radiated power P is found to be

We investigate the power radiated from the cavities as a function of the observation angle and

cavity parameters. We also show that, with an increase of the cross section of the cavity,
dominant peaks of oscillations of the radiated power are formed in the region 75 '<0 < 105 ~.The
focusing effect of the radiated power in the direction 0 9 g0 is found for short cavities.
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